807 research outputs found

    Two maternal origins of Chinese domestic light-body type goose

    Get PDF
    China is particularly rich in goose genetic resources. The systemic study of genetic diversity and origin of Chinese indigenous geese will provide important scientific basis for the conservation, utilization of resources and human history. The 521 bp control region (D-loop) of mitochondrial DNA from 13 lightbody type breeds was sequenced. The results showed that in the D-loop region of the 13 gray goose breeds, the content of T, C, A and G nucleotides was 23.8, 29.0, 32.2 and 15.1%, respectively. The average haplotype diversity (Hd) and nucleotide diversity (Pi) of domestic geese were 0.2153 and 0.00046, respectively. The 13 light-body type breeds had bigger nucleotide variance value among populations than the value within populations and all the breeds did not exist population expansion.Shared haplotype analysis and systemic systematic evolution analysis revealed that Chinese lightbody type domestic goose owned two maternal origins. YL goose breed originated from greylag goose (anser anser), and the other 12 light- body type goose breeds originated from swan goose (anser cygnoides)

    Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae

    Get PDF
    We performed large-scale mRNA expression profiling using an Affymetrix GeneChip to study Arabidopsis responses to the bacterial pathogen Pseudomonas syringae. The interactions were compatible (virulent bacteria) or incompatible (avirulent bacteria), including a nonhost interaction and interactions mediated by two different avirulence gene-resistance (R) gene combinations. Approximately 2000 of the similar to8000 genes monitored showed reproducible significant expression level changes in at least one of the interactions. Analysis of biological variation suggested that the system behavior of the plant response in an incompatible interaction was robust but that of a compatible interaction was not. A large part of the difference between incompatible and compatible interactions can be explained quantitatively. Despite high similarity between responses mediated by the R genes RPS2 and RPM1 in wild-type plants, RPS2-mediated responses were strongly suppressed by the ndr1 mutation and the NahG transgene, whereas RPM1-mediated responses were not. This finding is consistent with the resistance phenotypes of these plants. We propose a simple quantitative model with a saturating response curve that approximates the overall behavior of this plant-pathogen system

    HP1-Mediated Formation of Alternative Lengthening of Telomeres-Associated PML Bodies Requires HIRA but Not ASF1a

    Get PDF
    Approximately 10% of cancers use recombination-mediated Alternative Lengthening of Telomeres (ALT) instead of telomerase to prevent telomere shortening. A characteristic of cells that utilize ALT is the presence of ALT-associated PML nuclear bodies (APBs) containing (TTAGGG)n DNA, telomere binding proteins, DNA recombination proteins, and heterochromatin protein 1 (HP1). The function of APBs is unknown and it is possible that they are functionally heterogeneous. Most ALT cells lack functional p53, and restoration of the p53/p21 pathway in these cells results in growth arrest/senescence and a substantial increase in the number of large APBs that is dependent on two HP1 isoforms, HP1Ξ± and HP1Ξ³. Here we investigated the mechanism of HP1-mediated APB formation, and found that histone chaperones, HIRA and ASF1a, are present in APBs following activation of the p53/p21 pathway in ALT cells. HIRA and ASF1a were also found to colocalize inside PML bodies in normal fibroblasts approaching senescence, providing evidence for the existence of a senescence-associated ASF1a/HIRA complex inside PML bodies, consistent with a role for these proteins in induction of senescence in both normal and ALT cells. Moreover, knockdown of HIRA but not ASF1a significantly reduced p53-mediated induction of large APBs, with a concomitant reduction of large HP1 foci. We conclude that HIRA, in addition to its physical and functional association with ASF1a, plays a unique, ASF1a-independent role, which is required for the localization of HP1 to PML bodies and thus for APB formation

    Myosin Light-Chain Kinase Is Necessary for Membrane Homeostasis in Cochlear Inner Hair Cells

    Get PDF
    The structural homeostasis of the cochlear hair cell membrane is critical for all aspects of sensory transduction, but the regulation of its maintenance is not well understood. In this report, we analyzed the cochlear hair cells of mice with specific deletion of myosin light chain kinase (MLCK) in inner hair cells. MLCK-deficient mice showed impaired hearing, with a 5- to 14-dB rise in the auditory brainstem response (ABR) thresholds to clicks and tones of different frequencies and a significant decrease in the amplitude of the ABR waves. The mutant inner hair cells produced several ball-like structures around the hair bundles in vivo, indicating impaired membrane stability. Inner hair cells isolated from the knockout mice consistently displayed less resistance to hypoosmotic solution and less membrane F-actin. Myosin light-chain phosphorylation was also reduced in the mutated inner hair cells. Our results suggest that MLCK is necessary for maintaining the membrane stability of inner hair cells

    The DNA Repair Gene APE1 T1349G Polymorphism and Risk of Gastric Cancer in a Chinese Population

    Get PDF
    Background: Apurinic/apyrimidinic endonuclease 1 (APE1) has a central role in the repair of apurinic apyrimidic sites through both its endonuclease and its phosphodiesterase activities. A common APE1 polymorphism, T1349G (rs3136820), was previously shown to be associated with the risk of cancers. Objective: We hypothesized that the APE1 T1349G polymorphism is also associated with risk of gastric cancer. Methods: In a hospital-based case-control study of 338 case patients with newly diagnosed gastric cancer and 362 cancerfree controls frequency-matched by age and sex, we genotyped the T1349G polymorphism and assessed its associations with risk of gastric cancer. Results: Compared with the APE1 TT genotype, individuals with the variant TG/GG genotypes had a significantly increased risk of gastric cancer (odds ratio = 1.69, 95 % confidence interval = 1.19–2.40), which was more pronounced among subgroups of aged #60 years, male, ever smokers, and ever drinkers. Further analyses revealed that the variant genotypes were associated with an increased risk for diffuse-type, low depth of tumor infiltration (T1 and T2), and lymph node metastasis gastric cancer. Conclusions: The APE1 T1349G polymorphism may be a marker for the development of gastric cancer in the Chinese population. Larger studies are required to validate these findings in diverse populations

    Low Temperature Growth of In2O3and InN Nanocrystals on Si(111) via Chemical Vapour Deposition Based on the Sublimation of NH4Cl in In

    Get PDF
    Indium oxide (In2O3) nanocrystals (NCs) have been obtained via atmospheric pressure, chemical vapour deposition (APCVD) on Si(111) via the direct oxidation of In with Ar:10% O2at 1000 Β°C but also at temperatures as low as 500 Β°C by the sublimation of ammonium chloride (NH4Cl) which is incorporated into the In under a gas flow of nitrogen (N2). Similarly InN NCs have also been obtained using sublimation of NH4Cl in a gas flow of NH3. During oxidation of In under a flow of O2the transfer of In into the gas stream is inhibited by the formation of In2O3around the In powder which breaks up only at high temperatures, i.e.T > 900 Β°C, thereby releasing In into the gas stream which can then react with O2leading to a high yield formation of isolated 500 nm In2O3octahedrons but also chains of these nanostructures. No such NCs were obtained by direct oxidation forTG < 900 Β°C. The incorporation of NH4Cl in the In leads to the sublimation of NH4Cl into NH3and HCl at around 338 Β°C which in turn produces an efficient dispersion and transfer of the whole In into the gas stream of N2where it reacts with HCl forming primarily InCl. The latter adsorbs onto the Si(111) where it reacts with H2O and O2leading to the formation of In2O3nanopyramids on Si(111). The rest of the InCl is carried downstream, where it solidifies at lower temperatures, and rapidly breaks down into metallic In upon exposure to H2O in the air. Upon carrying out the reaction of In with NH4Cl at 600 Β°C under NH3as opposed to N2, we obtain InN nanoparticles on Si(111) with an average diameter of 300 nm
    • …
    corecore